3.117 \(\int \frac{\sec ^2(c+d x)}{a \cos (c+d x)+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=80 \[ -\frac{\sqrt{a^2+b^2} \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{b^2 d}-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\sec (c+d x)}{b d} \]

[Out]

-((a*ArcTanh[Sin[c + d*x]])/(b^2*d)) - (Sqrt[a^2 + b^2]*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b
^2]])/(b^2*d) + Sec[c + d*x]/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0835684, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3104, 3770, 3074, 206} \[ -\frac{\sqrt{a^2+b^2} \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{b^2 d}-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\sec (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

-((a*ArcTanh[Sin[c + d*x]])/(b^2*d)) - (Sqrt[a^2 + b^2]*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b
^2]])/(b^2*d) + Sec[c + d*x]/(b*d)

Rule 3104

Int[cos[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
 -Simp[Cos[c + d*x]^(m + 1)/(b*d*(m + 1)), x] + (-Dist[a/b^2, Int[Cos[c + d*x]^(m + 1), x], x] + Dist[(a^2 + b
^2)/b^2, Int[Cos[c + d*x]^(m + 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[
a^2 + b^2, 0] && LtQ[m, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{a \cos (c+d x)+b \sin (c+d x)} \, dx &=\frac{\sec (c+d x)}{b d}-\frac{a \int \sec (c+d x) \, dx}{b^2}+\frac{\left (a^2+b^2\right ) \int \frac{1}{a \cos (c+d x)+b \sin (c+d x)} \, dx}{b^2}\\ &=-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\sec (c+d x)}{b d}-\frac{\left (a^2+b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a^2+b^2-x^2} \, dx,x,b \cos (c+d x)-a \sin (c+d x)\right )}{b^2 d}\\ &=-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}-\frac{\sqrt{a^2+b^2} \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{b^2 d}+\frac{\sec (c+d x)}{b d}\\ \end{align*}

Mathematica [A]  time = 0.138254, size = 109, normalized size = 1.36 \[ \frac{2 \sqrt{a^2+b^2} \tanh ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )-b}{\sqrt{a^2+b^2}}\right )+a \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+b \sec (c+d x)}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

(2*Sqrt[a^2 + b^2]*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]] + a*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x
)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + b*Sec[c + d*x])/(b^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.174, size = 174, normalized size = 2.2 \begin{align*}{\frac{1}{db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{a}{{b}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{1}{db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{a}{{b}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+2\,{\frac{{a}^{2}}{{b}^{2}d\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }+2\,{\frac{1}{d\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

1/d/b/(tan(1/2*d*x+1/2*c)+1)-1/d*a/b^2*ln(tan(1/2*d*x+1/2*c)+1)-1/d/b/(tan(1/2*d*x+1/2*c)-1)+1/d*a/b^2*ln(tan(
1/2*d*x+1/2*c)-1)+2/d/b^2/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2))*a^2+2/d/(a
^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.590667, size = 471, normalized size = 5.89 \begin{align*} -\frac{a \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - a \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) - \sqrt{a^{2} + b^{2}} \cos \left (d x + c\right ) \log \left (-\frac{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} + 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) - 2 \, b}{2 \, b^{2} d \cos \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(a*cos(d*x + c)*log(sin(d*x + c) + 1) - a*cos(d*x + c)*log(-sin(d*x + c) + 1) - sqrt(a^2 + b^2)*cos(d*x +
 c)*log(-(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 + 2*sqrt(a^2 + b^2)*(b*co
s(d*x + c) - a*sin(d*x + c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)) - 2*b)/(b^
2*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{a \cos{\left (c + d x \right )} + b \sin{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**2/(a*cos(c + d*x) + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.3333, size = 184, normalized size = 2.3 \begin{align*} -\frac{\frac{a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} - \frac{a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} + \frac{\sqrt{a^{2} + b^{2}} \log \left (\frac{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{b^{2}} + \frac{2}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-(a*log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^2 - a*log(abs(tan(1/2*d*x + 1/2*c) - 1))/b^2 + sqrt(a^2 + b^2)*log(ab
s(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(a^2 + b^2)))
/b^2 + 2/((tan(1/2*d*x + 1/2*c)^2 - 1)*b))/d